Unifying principles of bifunctional, proximity-inducing small molecules.

Last updated: 03-25-2020

Read original article here

Unifying principles of bifunctional, proximity-inducing small molecules.

Nature uses a variety of tools to mediate the flow of information in cells, many of which control distances between key biomacromolecules. Researchers have thus generated compounds whose activities stem from interactions with two (or more) proteins simultaneously. In this Perspective, we describe how these 'bifunctional' small molecules facilitate the study of an increasingly wide range of complex biological phenomena and enable the drugging of otherwise challenging therapeutic targets and processes. Despite their structural and functional differences, all bifunctional molecules employ Nature's strategy of altering interactomes and inducing proximity to modulate biology. They therefore exhibit a shared set of chemical and biophysical principles that have not yet been appreciated fully. By highlighting these commonalities-and their wide-ranging consequences-we hope to chip away at the artificial barriers that threaten to constrain this interdisciplinary field. Doing so promises to yield remarkable benefits for biological research and therapeutics discovery.

This article was published in the following journal.

A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Small, punctate nuclear structures found in close proximity to COILED BODIES. They are enriched with SMN COMPLEX PROTEINS and may play a role in the processing of SMALL NUCLEAR RIBONUCLEOPROTEINS. Techniques for determining the proximity of molecules based on ENERGY TRANSFER between bioluminescent chromophores and acceptor fluorophores that have overlapping emission and absorption spectra. Organelles in which the splicing and excision reactions that remove introns from precursor messenger RNA molecules occur. One component of a spliceosome is five small nuclear RNA molecules (U1, U2, U4, U5, U6) that, working in conjunction with proteins, help to fold pieces of RNA into the right shapes and later splice them into the message.


Read the rest of this article here