Gene regulatory programmes of tissue regeneration

Last updated: 06-10-2020

Read original article here

Gene regulatory programmes of tissue regeneration

Gene regulatory programmes of tissue regeneration
Stem cells
Abstract
Regeneration is the process by which organisms replace lost or damaged tissue, and regenerative capacity can vary greatly among species, tissues and life stages. Tissue regeneration shares certain hallmarks of embryonic development, in that lineage-specific factors can be repurposed upon injury to initiate morphogenesis; however, many differences exist between regeneration and embryogenesis. Recent studies of regenerating tissues in laboratory model organisms — such as acoel worms, frogs, fish and mice — have revealed that chromatin structure, dedicated enhancers and transcriptional networks are regulated in a context-specific manner to control key gene expression programmes. A deeper mechanistic understanding of the gene regulatory networks of regeneration pathways might ultimately enable their targeted reactivation as a means to treat human injuries and degenerative diseases. In this Review, we consider the regeneration of body parts across a range of tissues and species to explore common themes and potentially exploitable elements.
Get full journal access for 1 year
$265.00
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
Additional access options:
Fig. 1: Comparison of tissue patterning events during ontogenetic and regenerative development.
Fig. 2: Relationship between genetic programmes of regeneration and embryogenesis.
Fig. 3: Discovering DNA regulatory elements involved in regeneration.
Fig. 4: Chromatin dynamics in regeneration.
Fig. 5: Phase transitions and injury-induced regeneration programmes.
References
1.
Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
3.
Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).
CAS   PubMed   PubMed Central   Google Scholar  
4.
Wells, J. M. & Watt, F. M. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557, 322–328 (2018).
CAS   PubMed   Google Scholar  
5.
Wosczyna, M. N. & Rando, T. A. A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev. Cell 46, 135–143 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
6.
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
7.
Wagner, D. E., Wang, I. E. & Reddien, P. W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011).
CAS   PubMed   PubMed Central   Google Scholar  
8.
Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).
CAS   PubMed   Google Scholar  
9.
Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).
CAS   PubMed   Google Scholar  
10.
Knopf, F. et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20, 713–724 (2011).
CAS   PubMed   Google Scholar  
12.
Naik, S., Larsen, S. B., Cowley, C. J. & Fuchs, E. Two to tango: dialog between immunity and stem cells in health and disease. Cell 175, 908–920 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
13.
Stevens, K. R. & Murry, C. E. Human pluripotent stem cell-derived engineered tissues: clinical considerations. Cell Stem Cell 22, 294–297 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
14.
Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).
CAS   PubMed   Google Scholar  
15.
Fausett, B. V. & Goldman, D. A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26, 6303–6313 (2006).
CAS   PubMed   PubMed Central   Google Scholar  
16.
Ransom, R. C. et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature 563, 514–521 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
17.
Honkoop, H. et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 8, 98 (2019).
Google Scholar  
18.
Kumar, A., Gates, P. B. & Brockes, J. P. Positional identity of adult stem cells in salamander limb regeneration. C. R. Biol. 330, 485–490 (2007).
CAS   PubMed   Google Scholar  
19.
Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 1–20 (2018).
Google Scholar  
20.
Blassberg, R. A., Garza-Garcia, A., Janmohamed, A., Gates, P. B. & Brockes, J. P. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J. Cell Sci. 124, 47–56 (2011).
CAS   PubMed   Google Scholar  
21.
Elewa, A. et al. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat. Commun. 8, 2286–2289 (2017).
PubMed   PubMed Central   Google Scholar  
22.
Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362, eaaq0681 (2018). This study uses single-cell transcriptome sequencing of connective tissue in regenerating axolotl limbs to detect a regeneration gene signature that precedes the emergence of an embryonic-like gene expression programme.
PubMed   PubMed Central   Google Scholar  
23.
Aztekin, C. et al. Identification of a regeneration-organizing cell in the Xenopus tail. Science 364, 653–658 (2019). By using a time series between regenerative and non-regenerative stages in Xenopus, the authors uncover a regeneration-specific gene expression signature.
CAS   PubMed   PubMed Central   Google Scholar  
24.
Oulhen, N. et al. Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech. Dev. 142, 10–21 (2016).
CAS   PubMed   PubMed Central   Google Scholar  
25.
Storer, M. A. et al. Acquisition of a unique mesenchymal precursor-like blastema state underlies successful adult mammalian digit tip regeneration. Dev. Cell 52, 509–524 (2020).
CAS   PubMed   Google Scholar  
26.
Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).
CAS   PubMed   PubMed Central   Google Scholar  
27.
Gupta, V. et al. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr. Biol. 23, 1221–1227 (2013).
CAS   PubMed   PubMed Central   Google Scholar  
28.
Schindler, Y. L. et al. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141, 3112–3122 (2014).
CAS   PubMed   PubMed Central   Google Scholar  
29.
Oka, T., Xu, J. & Molkentin, J. D. Re-employment of developmental transcription factors in adult heart disease. Semin. Cell Dev. Biol. 18, 117–131 (2007).
CAS   PubMed   Google Scholar  
30.
Bisping, E. et al. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc. Natl Acad. Sci. USA 103, 14471–14476 (2006).
CAS   PubMed   Google Scholar  
31.
Wong, A. Y. & Whited, J. L. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 147, dev181636 (2020).
CAS   PubMed   Google Scholar  
32.
Catarino, R. R. & Stark, A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 32, 202–223 (2018).
33.
Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 1–27 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
35.
Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016). This article reveals regeneration-responsive transcriptional enhancers and shows that they can be adapted to deliver pro-regenerative factors.
CAS   PubMed   PubMed Central   Google Scholar  
36.
Goldman, J. A. et al. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40, 392–404.e5 (2017). This study uses a transgenic histone-tagging approach to identify and validate many regeneration-responsive enhancer elements that are relevant to cardiomyocyte regeneration.
CAS   PubMed   PubMed Central   Google Scholar  
37.
Pfefferli, C. & Jaźwińska, A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat. Commun. 8, 15151 (2017).
PubMed   PubMed Central   Google Scholar  
38.
Vizcaya-Molina, E. et al. Damage-responsive elements in Drosophila regeneration. Genome Res. 28, 1852–1866 (2018). This work profiles the enhancers from Drosophila imaginal discs that are active during regeneration and compares them to those in embryonic development and from other regeneration models.
CAS   PubMed   PubMed Central   Google Scholar  
39.
Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363, eaau6173 (2019). This article describes egr1 as a pioneer transcription factor and possible master regulator required for whole-body regeneration in the acoel worm, Hofstenia miamia.
CAS   PubMed   Google Scholar  
40.
Suzuki, N. et al. Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 8, 455 (2019).
PubMed   PubMed Central   Google Scholar  
42.
Hewitt, K. J. et al. GATA factor-regulated Samd14 enhancer confers red blood cell regeneration and survival in severe anemia. Dev. Cell 42, 213–225.e4 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
43.
Soukup, A. A. et al. Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer. J. Clin. Invest. 129, 1180–1192 (2019).
PubMed   PubMed Central   Google Scholar  
44.
Harris, R. E., Setiawan, L., Saul, J. & Hariharan, I. K. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 5, 49 (2016). This study describes Polycomb-mediated decommissioning of an embryonic enhancer that limits regenerative capacity in Drosophila imaginal discs.
Google Scholar  
45.
Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).
CAS   PubMed   Google Scholar  
46.
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
CAS   PubMed   Google Scholar  
48.
Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16–19 (2019).
49.
Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).
CAS   PubMed   PubMed Central   Google Scholar  
50.
Keyes, B. E. & Fuchs, E. Stem cells: aging and transcriptional fingerprints. J. Cell Biol. 217, 79–92 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
51.
Yu, Z. et al. Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23, 487–500.e6 (2018).
CAS   PubMed   Google Scholar  
52.
Bernardos, R. L., Barthel, L. K., Meyers, J. R. & Raymond, P. A. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci. 27, 7028–7040 (2007).
CAS   PubMed   PubMed Central   Google Scholar  
53.
Ramachandran, R., Reifler, A., Parent, J. M. & Goldman, D. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J. Comp. Neurol. 518, 4196–4212 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
54.
Ito, K. et al. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev. Dyn. 243, 1106–1115 (2014).
CAS   PubMed   Google Scholar  
55.
Lust, K. & Wittbrodt, J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. eLife 7, 7028 (2018).
Google Scholar  
56.
Gadye, L. et al. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell 21, 775–790.e9 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
57.
Rocha-Martins, M. et al. De novo genesis of retinal ganglion cells by targeted expression of Klf4 in vivo. Development 146, dev176586 (2019).
CAS   PubMed   Google Scholar  
58.
Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168 (2003).
CAS   PubMed   Google Scholar  
59.
Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).
CAS   PubMed   PubMed Central   Google Scholar  
60.
Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).
CAS   PubMed   Google Scholar  
61.
Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
62.
Marshall, L. N. et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc. Natl Acad. Sci. USA 116, 3614–3623 (2019).
CAS   PubMed   Google Scholar  
63.
Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).
64.
Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013).
CAS   PubMed   PubMed Central   Google Scholar  
66.
Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).
CAS   PubMed   Google Scholar  
67.
Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).
PubMed   PubMed Central   Google Scholar  
68.
von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA 109, 2394–2399 (2012).
Google Scholar  
69.
Wang, J., Liu, S., Heallen, T. & Martin, J. F. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15, 1–684 (2018).
Google Scholar  
70.
Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779.e7 (2019). Combined with Sun et al., Li et al. and Chang et al., this work suggests a model in which mechanical transduction initiates chromatin reprogramming by the combined action of Swi/Snf and YAP signalling during liver and heart regeneration.
CAS   PubMed   PubMed Central   Google Scholar  
71.
Schuettengruber, B. & Cavalli, G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136, 3531–3542 (2009).
CAS   PubMed   Google Scholar  
72.
Narlikar, G. J., Fan, H.-Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
CAS   PubMed   Google Scholar  
73.
Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
74.
Ben-Yair, R. et al. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development 146, dev178632 (2019). This work shows that Polycomb activity can be pro-regenerative by promoting dedifferentiation through silencing sarcomeric genes in muscle.
PubMed   Google Scholar  
75.
Maki, N., Tsonis, P. A. & Agata, K. Changes in global histone modifications during dedifferentiation in newt lens regeneration. Mol. Vis. 16, 1893–1897 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
76.
Ahmad, K. & Henikoff, S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104, 839–847 (2001).
CAS   PubMed   Google Scholar  
77.
Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).
CAS   PubMed   PubMed Central   Google Scholar  
78.
Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
79.
Fan, X. et al. Dynamic alterations to α-actinin accompanying sarcomere disassembly and reassembly during cardiomyocyte mitosis. PLoS One 10, e0129176 (2015).
PubMed   PubMed Central   Google Scholar  
80.
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).
CAS   PubMed   Google Scholar  
81.
Dai, Y.-S., Cserjesi, P., Markham, B. E. & Molkentin, J. D. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J. Biol. Chem. 277, 24390–24398 (2002).
CAS   PubMed   Google Scholar  
82.
Samarajeewa, A. et al. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development 145, dev166579 (2018).
PubMed   PubMed Central   Google Scholar  
83.
Hariharan, I. K. & Serras, F. Imaginal disc regeneration takes flight. Curr. Opin. Cell Biol. 48, 10–16 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
84.
Pengelly, A. R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).
85.
Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136, 1123–1139 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
86.
Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).
CAS   PubMed   PubMed Central   Google Scholar  
87.
Sif, S., Stukenberg, P. T., Kirschner, M. W. & Kingston, R. E. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12, 2842–2851 (1998).
CAS   PubMed   PubMed Central   Google Scholar  
88.
Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).
PubMed   Google Scholar  
89.
Jen, H.-I. et al. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 8, e44328 (2019).
PubMed   PubMed Central   Google Scholar  
90.
Palacios, D. et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7, 455–469 (2010).
CAS   PubMed   Google Scholar  
92.
Shaw, T. & Martin, P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 10, 881–886 (2009).
CAS   PubMed   PubMed Central   Google Scholar  
93.
Stewart, S., Tsun, Z.-Y. & Izpisua Belmonte, J. C. A histone demethylase is necessary for regeneration in zebrafish. Proc. Natl Acad. Sci. USA 106, 19889–19894 (2009).
CAS   PubMed   Google Scholar  
94.
Lin, B. et al. Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell 21, 761–774.e5 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
95.
Wang, S. et al. Epigenetic compensation promotes liver regeneration. Dev. Cell 50, 43–56.e6 (2019). This work shows that disruption of DNA methylation by the knockout of Uhrf1 in mice inhibits normal Polycomb function by redistributing this function as a means to compensate for silencing of transposons.
CAS   PubMed   Google Scholar  
96.
Mallen-St Clair, J. et al. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 26, 439–444 (2012).
PubMed   PubMed Central   Google Scholar  
97.
Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).
CAS   PubMed   PubMed Central   Google Scholar  
98.
Ai, S. et al. Divergent requirements for EZH1 in heart development versus regeneration. Circ. Res. 121, 106–112 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
99.
Fowler, T., Sen, R. & Roy, A. L. Regulation of primary response genes. Mol. Cell 44, 348–360 (2011).
CAS   PubMed   PubMed Central   Google Scholar  
100.
Balamotis, M. A. et al. Complexity in transcription control at the activation domain-mediator interface. Sci. Signal. 2, ra20–ra20 (2009).
PubMed   PubMed Central   Google Scholar  
101.
Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Stem Cell 18, 456–466 (2016).
CAS   Google Scholar  
102.
Li, W. et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Stem Cell 25, 54–68.e5 (2019).
CAS   Google Scholar  
103.
Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019). This study shows that heterozygous mutations in chromatin-activating complexes can foster regeneration in mammalian livers.
CAS   PubMed   PubMed Central   Google Scholar  
104.
Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661–672 (2011).
CAS   PubMed   PubMed Central   Google Scholar  
105.
Moya, I. M. & Halder, G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 1–16 (2019).
Google Scholar  
106.
Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).
CAS   PubMed   PubMed Central   Google Scholar  
107.
Cao, J. et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell 42, 600–615.e4 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
108.
Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).
CAS   PubMed   Google Scholar  
110.
Wehner, D. & Weidinger, G. Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet. 31, 336–343 (2015).
CAS   PubMed   Google Scholar  
111.
Hancock, M. L. et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177, 722–736.e22 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
112.
Apel, P. J. et al. Effect of locally delivered IGF-1 on nerve regeneration during aging: an experimental study in rats. Muscle Nerve 41, 335–341 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
113.
Barton, E. R., Morris, L., Musaro, A., Rosenthal, N. & Sweeney, H. L. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J. Cell Biol. 157, 137–148 (2002).
CAS   PubMed   PubMed Central   Google Scholar  
114.
Chablais, F. & Jaźwińska, A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137, 871–879 (2010).
CAS   PubMed   Google Scholar  
115.
Choi, W.-Y. et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140, 660–666 (2013).
CAS   PubMed   PubMed Central   Google Scholar  
116.
Desbois-Mouthon, C. et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J. 20, 773–775 (2006).
CAS   PubMed   Google Scholar  
117.
Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
118.
Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653.e15 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
119.
Swarr, D. T. et al. The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes Dev. 33, 656–668 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
120.
Shim, S., Kwan, K. Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).
CAS   PubMed   PubMed Central   Google Scholar  
121.
Perry, R. B.-T., Hezroni, H., Goldrich, M. J. & Ulitsky, I. Regulation of neuroregeneration by long noncoding RNAs. Mol. Cell 72, 553–567.e5 (2018).
122.
Lin, X. et al. Long non-coding RNAs regulate Wnt signaling during feather regeneration. Development 145, dev162388 (2018).
PubMed   Google Scholar  
123.
Boos, F. et al. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21, 442–451 (2019).
CAS   PubMed   Google Scholar  
124.
Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).
CAS   PubMed   Google Scholar  
125.
Guo, A. et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362, eaan3303 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
126.
Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).
PubMed   PubMed Central   Google Scholar  
127.
Mundorf, J., Donohoe, C. D., McClure, C. D., Southall, T. D. & Uhlirova, M. Ets21c governs tissue renewal, stress tolerance, and aging in the Drosophila intestine. Cell Rep. 27, 3019–3033.e5 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
128.
Jessen, K. R., Mirsky, R. & Arthur-Farraj, P. The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev. Cell 34, 613–620 (2015).
CAS   PubMed   Google Scholar  
129.
Thorel, F. et al. Conversion of adult pancreatic alpha-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).
CAS   PubMed   PubMed Central   Google Scholar  
130.
Arthur-Farraj, P. J. et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633–647 (2012).
CAS   PubMed   PubMed Central   Google Scholar  
132.
Schuster, K. J. & Smith-Bolton, R. K. Taranis protects regenerating tissue from fate changes induced by the wound response in Drosophila. Dev. Cell 34, 119–128 (2015).
CAS   PubMed   Google Scholar  
133.
Worley, M. I., Alexander, L. A. & Hariharan, I. K. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 7, 487 (2018).
Google Scholar  
134.
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
CAS   PubMed   Google Scholar  
135.
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
136.
Gehani, S. S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).
CAS   PubMed   Google Scholar  
137.
Lau, P. N. I. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl Acad. Sci. USA 108, 2801–2806 (2011).
CAS   PubMed   Google Scholar  
138.
Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).
CAS   PubMed   Google Scholar  
139.
Wu, C.-C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).
PubMed   Google Scholar  
140.
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
141.
Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
142.
Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
CAS   PubMed   PubMed Central   Google Scholar  
143.
Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).
CAS   PubMed   Google Scholar  
144.
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
CAS   PubMed   PubMed Central   Google Scholar  
145.
Hainer, S. J., Bošković, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Profiling of pluripotency factors in single cells and early embryos. Cell 177, 1319–1329.e11 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
146.
Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).
CAS   PubMed   PubMed Central   Google Scholar  
147.
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
148.
van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).
PubMed   Google Scholar  
149.
Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Annu. Rev. Med. 70, 273–288 (2019).
CAS   PubMed   Google Scholar  
150.
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).
CAS   PubMed   Google Scholar  
151.
Chicoine, L. G. et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol. Ther. 22, 338–347 (2016).
Google Scholar  
152.
Recino, A. et al. Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Ther. 26, 40–56 (2019).
CAS   PubMed   Google Scholar  
153.
Trapani, I. Adeno-associated viral vectors as a tool for large gene delivery to the retina. Genes 10, 287 (2019).
CAS   PubMed Central   Google Scholar  
154.
Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).
CAS   PubMed   PubMed Central   Google Scholar  
155.
Davidsson, M. et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc. Natl Acad. Sci. USA 116, 27053–27062 (2019).
CAS   Google Scholar  
156.
Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
157.
Venable, J. H. Constant cell populations in normal, testosterone-deprived and testosterone-stimulated levator ani muscles. Am. J. Anat. 119, 263–270 (1966).
CAS   PubMed   Google Scholar  
158.
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).
CAS   Google Scholar  
159.
Carr, M. J. et al. Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration. Cell Stem Cell 24, 240–256.e9 (2019).
CAS   PubMed   Google Scholar  
160.
Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).
CAS   PubMed   PubMed Central   Google Scholar  
161.
Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A. & Brockes, J. P. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777 (2007).
CAS   PubMed   PubMed Central   Google Scholar  
162.
Thornton, C. S. The effect of apical cap removal on limb regeneration in Amblystoma larvae. J. Exp. Zool. 134, 357–381 (1957).
CAS   PubMed   Google Scholar  
163.
Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).
PubMed   PubMed Central   Google Scholar  
164.
Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, eaav9314 (2019).
CAS   PubMed   PubMed Central   Google Scholar  
165.
Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).
CAS   PubMed   Google Scholar  
166.
Matsumoto, T., Wakefield, L., Tarlow, B. D. & Grompe, M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26, 34–47.e3 (2020).
CAS   PubMed   Google Scholar  
167.
González-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).
PubMed   PubMed Central   Google Scholar  
168.
Lucchetta, E. M. & Ohlstein, B. Amitosis of polyploid cells regenerates functional stem cells in the Drosophila intestine. Cell Stem Cell 20, 609–620.e6 (2017).


Read the rest of this article here